0=(-4.9t^2)+25t

Simple and best practice solution for 0=(-4.9t^2)+25t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(-4.9t^2)+25t equation:



0=(-4.9t^2)+25t
We move all terms to the left:
0-((-4.9t^2)+25t)=0
We add all the numbers together, and all the variables
-((-4.9t^2)+25t)=0
We calculate terms in parentheses: -((-4.9t^2)+25t), so:
(-4.9t^2)+25t
We get rid of parentheses
-4.9t^2+25t
Back to the equation:
-(-4.9t^2+25t)
We get rid of parentheses
4.9t^2-25t=0
a = 4.9; b = -25; c = 0;
Δ = b2-4ac
Δ = -252-4·4.9·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-25}{2*4.9}=\frac{0}{9.8} =0 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+25}{2*4.9}=\frac{50}{9.8} =5+1/9.8 $

See similar equations:

| 2y−5=4 | | 0.3x-0.8=0.2-0.3x | | 18−y=36 | | 2^x/3^x+1=1 | | 1/3(45y-18=15(y+1) | | 2x-3=3x-21 | | -2÷3m-4=10 | | 4+-4+-9b–=7 | | 2x/5=0 | | 3.5z-2.z=-6. | | 7y+12=4y-15 | | 3^2x-3=81 | | -3(-4p+8=-108 | | Z=3/7y-6 | | 3x+3x+1=35 | | 3x(x)-x-14=0 | | 47=3–6y | | ((2x+6)/5)=3x-4 | | 0.01^x+9.9*0.1^x-1=0 | | 36/(2x+2)=45/15 | | 3x2-x-14=0 | | (2x+6)/5=3x-4 | | x+x*x=48 | | 5x+13=113 | | 4(3n+3)+3n=57 | | 1/5=4/n | | -15+25=-5(x+5) | | 5x+25=x-57 | | 5(x+1)+2(x+1)=42 | | 1/5=2/n | | p-60=42 | | 5=-6+v |

Equations solver categories